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A b s t r a c t  - -  Combined heat and mass transfer in non-Darcy natural convection flow along a permeable vertical cylinder embedded 
in a saturated porous medium is studied. The boundary layer analysis is formulated in terms of the combined thermal and 
solutal buoyancy effect. The flow field characteristics are analyzed using the implicit finite difference method as well as the local 
nonsimilarity method. The effect of the curvature, the buoyancy ratio, the Lewis number and the transpiration parameter on the 
local Nusselt number and the local Sherwood number are also studied. The results are presented in tabular form as well as 
graphically. Comparisons of the results obtained by the local nonsimilarity method are in excellent agreement with finite difference 
solution up to ~ (the curvature parameter) of 10. The effects of different pertinent parameters on the velocity, temperature and 
species concentration profiles are also shown graphically. ~)1999 Editions scientifiques et m~dicales Elsevier SAS. 
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N o m e n c l a t u r e  
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Cw 

C~ 

D 
Dp 

f 

g 
Gr* 

K 
K* 

species concentration in the bound- 
ary layer 
constant  species concentration at  the 
surface of the cylinder 
ambient constant  species concentra- 
tion 
mass diffusivity 
particle diameter 
transformed stream function 
blowing and suction parameter  
acceleration due to gravity 
modified Grashof number  
gri t  K K* (Tw -- T ~ ) / v  2 
permeability of the porous media 
Inertial coefficient defined in equa- 
t ion (5) 
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Le Lewiss number  defined in equa- 
t ion (18) 

N buoyancy ratio measures the effect 
of concentration buoyancy effect to 
the thermal  buoyancy effect defined 
in equation (18) 

Nu= local Nusselt number  
r radial coordinate 
re radius of the cylinder 
Rax modified local Rayleigh number  de- 

fined in equation (11) 
s porosity 
Sc Schmidt number  
Sh= local Sherwood number  
T temperature  in the boundary layer 
Tw constant  temperature  at  the surface 

of the cylinder 
T ~  ambient constant temperature  parti- 

cle diameter 
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u,V reference velocity component in the 
x and r directions 

V surface mass flux 
x axial coordinate 

Greek symbols 

O~ 

Zr 
Zc 
¢ 

12 

8 
P 

equivalent thermal diffusivity 
thermal expansion coefficient 
concentration expansion coefficient 
dimensionless concentration function 
pseudosimilarity variable 
fluid kinematic viscosity 
dimensionless temperature function 
density of the fluid 
stretched streamwise coordinate 
stream function 

1. I N T R O D U C T I O N  

Natural convection heat and mass transfer driven 
by combined thermal and solutal buoyancy forces in 
a porous medium have received considerable attention 
in the past decades [1, 2]. This attention stems from 
its importance in many geophysical and engineering 
applications. Such applications include the movement 
of contaminants in ground water, moisture transport in 
thermal insulation, underground nuclear waste storage 
sites, and grain storage installations. Most of the 
investigations on heat and mass transfer flows driven by 
temperature and concentration variations are focused 
mainly on the convective instability of porous layers 
with imposed vertical temperature and concentration 
gradients [3-5]. Pera and Gebhart [6] and Chen et 
al. [7] studied the wave and vortex modes of the 
instability of a horizontal and inclined free convection 
under the combined buoyancy effects. The interaction 
between the two buoyancy effects that drive the flow in 
porous media, namely, the density difference caused by 
the concentration variations and the density difference 
caused by the temperature variations in porous media 
subjected to a horizontal density gradient have received 
less attention. Bejan and Khair [8] presented in their 
study a scale analysis of heat and mass transfer 
about a vertical plate embedded in a porous media. 
They considered concentration gradients, which aid 
or oppose thermal gradients, but reported limited 
similarity results for the latter case. Later on, Trevisan 
and Bejan [9] extended the analysis to a porous medium 
confined between two vertical walls maintained at 
different temperature and concentration levels. Rapits 
et al. [10] conducted a steady-state analysis on the effect 
of the natural convection flow and mass transfer on a 
viscous flow through a porous medium bounded by a 
vertical infinite plate. In this study, they considered 
a case when the temperature and the concentration 
on the plate are kept constant. Evan and Nunn [11] 
investigated free thermoheline convective in sediments 
surrounding a salt column. 

The problem of free convection about a vertical 
cylinder in a porous medium due to combined driving 
forces has been studied by Yiicel [12]. In this investi- 
gation, Yiicel formulated the problem by considering 
the combined buoyancy effect rather than the limiting 
case of heat- or mass-transfer driven flow. In this anal- 
ysis, the range of buoyancy parameters and the Lewis 
number for which flows are possible were identified for 
both favorable and adverse solute density gradients. A 
scale analysis originally suggested by Bejan [13] was 
introduced for four possible regimes depending on the 
buoyancy ratio and Lewis number, and numerical solu- 
tions to the boundary layer equations were obtained for 
a limited range of buoyancy ratios. Recently, Nakayama 
and Hossain [14] revisited the physical model of Bejan 
and Khair, and then extended it for the case of arbi- 
trary shapes. Highly accurate heat and mass transfer 
formulae, which cover all ranges of the buoyancy ratio 
and Lewis number are obtained by using a simple inte- 
gral treatment. All possible physical limiting conditions 
are examined to construct two distinct regime maps 
for heat transfer and mass transfer, respectively, which 
subsequently lead to an interesting paradox. 

All the above studies were confined to the case of 
Darcy flow. Vafai and Tien [15] investigated the effects 
of a solid boundary and the inertial forces on flow 
and heat transfer in porous media. The results showed 
significant effects on the heat transfer rate with the 
introduction of the viscous effects due to frictional drag 
at the boundary and the inertial drag. 

The problem of simultaneous heat and mass transfer 
accompanied by phase changes in porous insulation was 
investigated by Vafai and Whitaker [16]. In their study, 
they used the local volume-averaging technique to arrive 
at a rigorous and fundamental formulation of the heat 
and mass transfer process in an insulating material. 
Most of the recent studies on non-Darcy natural 
convection in porous media deal with the thermal 
driving force alone as done by Minkowycz and Cheng 
[17] for the natural convection flow about a vertical 
cylinder embedded in a saturated porous medium with 
variable surface temperature. Later investigations were 
performed by Vasanth et al. [18], for flow from an 
isotherm slender vertical frustum of a cone, Ingham 
[19], for the flow from a axisymmetric bodies of arbitrary 
shape and Hossain and Nakayama [20] for the flow along 
a vertical cylinder with surface mass flux. Very recently, 
the non-Darcian effects on double-diffusive convection 
flow within a porous medium have been investigated by 
Fard et al. [21]. 

The present study addresses the combined effect 
of heat and mass transfer on the natural convection 
flow of a non-Darcy fluid from a vertical permeable 
cylinder embedded in a porous medium. The governing 
equations are obtained in terms of local nonsimilarity 
equations. Numerical solutions are obtained by employ- 
ing the method of local nonsimilarity and the implicit 
finite difference method for wide range of pertinent 
parameters, namely, the buoyancy ratio, N, the Lewis 
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number,  Le, the modified Grashof  number,  Gr*, and 
the transverse curvature parameter ,  ~. Results obtained 
from this s tudy  will be helpful in predict ing flow, heat  
transfer, and solute or concentrat ion dispersion about  
intrusive bodies such as salt domes, magnet ic  intrusions, 
piping and easing system and similar s tructures found 
in these applications.  

2. MATHEMATICAL FORMULATION 

Consider  the problem of s teady non-Darcy free 
convection flow of a viscous incompressible fluid about  
a vert ical  porous cylinder of radius r0 embedded 
in a sa tu ra ted  porous medium at t empera ture  T 
and concentrat ion C. The surface of the cylinder 
is mainta ined at a uniform tempera tu re  T~ and 
uniform concentrat ion C~. The physical model and 
the coordinate  system are shown in figure 1. 

In this investigation, the porous medium is assumed 
to be homogeneous and isotropic, The physical proper- 
ties are assumed to be constant  except for the densi ty 
variat ion in the buoyancy term. The fluid and solid 
phases are in local thermal  equil ibrium since the flow 
is assumed to be sufficiently slow. Also, the analysis is 
confined to small concentrat ion variations such tha t  the 
cross diffusion effects and the interfacial velocity at the 
cylinder surface due to mass diffusion can be neglected. 
Under  these assumptions,  the boundary  layer equations 
governing the flow, the energy and solute t ranspor t  in 
cylindrical  coordinates are 

~ z ( r u ) ÷ ~ r ( r V )  = 0  (1) 

K* 
u + _ _ u  2 = g K  [13T ( T - T o o ) + 1 3 c  ( C - C ~ ) ]  (2) 

1/ 12 

f 
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i 

X 
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) r  

Figure 1. Physical model and the coordinate system. 
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or 0 ( r 0 r )  
~ + V a r - - r  ark Or] (3) 

OC O C _  D ~ ( O C )  
u ~ + V  Or r Or r ~ (4) 

where, u , v , T  and C are volume-averaged quantit ies 
representing respectively the velocity components  in 
the x- and r-directions,  ~ is the kinetic coefficient of 
viscosity, g is the acceleration due to gravity, a and 
D are the equivalent thermal  aim mass diffusivities 
specially of the sa tura ted  porous medium, /3T and 3c 
are, respectively, the absolute values of the coefficient of 
thermal  and concentrat ion expansion. In equation (2), 
K and K* are respectively the permeabi l i ty  and the 
inertial coefficients expressed in terms of characterist ic 
pore or particle diameter  Dp and porosi ty s. These are 
defined as given below: 

K Dp2 sa 
- and K* -- 1.75 Dp (5) 

150 (1 -- s) 2 150 (1 - s) 

Further,  equation (2) approaches Darcy 's  law for 
very small K*. According to Plumb and Huenfeld [22], 
the inertial  effects are found to be significant when 
g/3KK*(Tw - Too)/~ ,2 > 0.1. 

The boundary  conditions for the present problem 
are: 

r = r o : V = V ( x ) , T = T w ,  C = C w ?  

r ~ o c : u = 0 ,  T = T ~ , C = C o o  ~ (6) 

Near the leading edge, the flow- is caused mainly 
by the effect of the buoyancy force, which arises from 
the difference in tempera ture  between the plate and 
the ambient  fluid. Therefore the following group of 
t ransformations are introduced in (2) and (3). 

1/2 g](x,y) = a ro na~ f({,r]) (7) 

T - To~ = (Tw - Too) 0({,r/) (8) 

C - C a  = (Cw - C~)  ¢(~,r/) (9) 

where ~ is the s t ream function satisfying the equation 
of continuity (1), and 

1 / 2  
Rc~ 2 x Raxl/2 ' 

rT 
W(x) = Vo x -1/2 (10) 

where 

Ra~ = g  K [ ~  (Tw - T ~ )  +/~c (Cw - Co~)] ~ /~  ~, (11) 

is the modified local Rayleigh number for a sa tura ted  
porous medium, and is defined to represent the 
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combined buoyant driving force and the stream function 
~P is defined by 

3~ 3~ 
r u = - ~ r ,  r V - -  3x (12) 

which satisfies the equation of continuity (1). Introduc- 
ing the variables defined above into (10), we have 

O~ 1 / 2  
ru---- -- R ~  f '(~,~) (13) 

3? 

and 
aro n 1/2 f, ~ v =  2-7-/~a~ {(7 -~y~)-f} (14) 

Equations (1-3) now become: 

f " + 2 G r *  ( I + N ) f ' f ' - -  O' + N ¢ '  
I + N  

(15) 

1 1 (  
-~ ( f  +~)O' 2 ~ f ,  ~ O _ o ,  (16) = 

Le + ~  ( f + ~ ) ¢ ,  ~ f, a C _ c ,  af  

(17) 
where primes denote differentiation with respect to ~1 
and 

Gr* = griT K K ~ (Tw - T~) 
l.,2 

L e -  a _ Sc and N =  f lc(Cw-Co~) (18) 
D P r  f i t  (Tw - To~) 

are, respectively, the modified local Grashof number 
expressing the relative importance of the inertial effects, 
the Lewis number and the buoyancy ratio that measures 
the ratio of the concentration buoyancy effect to thermal 
buoyancy effect. 

The corresponding boundary conditions transform 
into 

f = fw,  0 = l , ¢ = l  at ~ = 0  } (19) 
f '  = 0 , 0  = 0 , ¢ = 0  as ~ ] ~ o z  

where fw(= - 2  Vo/a) is the dimensionless transpiration 
parameter, which is positive for suction and negative 
for blowing of fluid through the surface of the cylinder. 
It is also necessary to note that N = 0 for no species 
diffusion, N --~ oz for no thermal diffusion, N > 0 for 
both effects combining to drive the flow and N < 0 for 
the opposite effects. 

For the flow adjacent to the surface of the cylinder, 
the local rate of heat transfer and the local chemical 
species transfer which may be obtained in terms of local 
Nusselt number Nu~ and local Sherwood number Sh~ 
from the following relations: 

Nu~ = - R a  1/2 0' (G0)= ~ 1/2 (1+ N) 0'(G0) (20) --~U~x, t 

and 

n 1/2 r ~  i/2 1 +~N i/2 
S h ~ = - ~  ¢ ' ( L 0 ) = - ~ a x , c  - -  ¢'(~,0) 

(21) 
In equations (20) and (21), the parameters Rax,T 

and Ra~,c are defined as 

Ra~,T = g K 3T (Tw - T ~ ) x  (22) 
OLI2 

and 

Ra~,c = g K flc (Cw - C ~ ) x  (23) 
O~lJ 

It is to be noted that the absolute value in 
equation (21) is necessary since Gr~,c (and N) may 
be negative. Thus the differences in transport are seen 
to be due to 0'(G0), ¢'(G0), and N. For Le = 1, the 
differences are entirely due to N. It may further be 
noted that the present problem for Darcy flow with an 
impermeable cylindrical surface had been investigated 
by Yficel [12]. For the same flow, with ( = 0, the above 
equations reduce to those for natural convection about 
a flat plate. Hence, deviation from ~ = 0 measures the 
effect of transverse curvature. It should be noted that as 
r0 --* ec, or for thin boundary layers where r does not 
differ appreciably from ro, the pseudo-similarity variable 

reduces to the corresponding similarity variable for a 
flat plate. However, the similarity treatment as well as 
an integral treatment of the natural convection Darcy 
flow with conjugate heat and mass transfer effects for 
a flat plate case has recently been investigated by 
Nakayama and Hossain [14]. 

3. M E T H O D S  OF SOLUTION 

In the present analysis, it is proposed to investigate 
the problem posed by the coupled nonsimilarity equa- 
tions (15-17) by employing the implicit finite difference 
method with Keller-box elimination method and the 
local nonsimilarity method. 

3.1. F in i te -d i f ference m e t h o d  (FDM)  

To implement this method, the coupled partial 
differential equations (15 17) are first reduced to a 
set of ordinary differential equations by replacing 
the partial derivatives with respect to V by a finite- 
difference formula centered at ((, v)-interval midpoint. 
The resulting set of ordinary differential equations are 
in turn reduced to a nonlinear system of algebraic 
equations which are then linearized by using Newton's 
quasi-linearization technique. Finally, the Keller-box 
elimination method has been introduced to get the 
corrections to the involved functions. Details of the 
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method have already been discussed in Hossain and 
Nakayama [20]. To initiate the solution, the profiles for 
the functions and their derivatives ( = 0 for different 
values of pertinent parameters are used from the exact 
solutions of the equations (24-26) at ( = 0. The overall 
computations were carried out on a DX-II personal 
computer, considering variable grids in the rkdirection, 
defined by r/j = sinh (rlj/a). With a = 100, j is allowed 
to vary automatically so that ~?o~ belongs to the interval 
10 < ~ < 20; this gives rise to convergent solutions 
with the desired accuracy for given values of the 
pertinent parameters. In order to assess the accuracy of 
this method, we have compared the solutions obtained 
by local nonsimilarity method upto the third level of 
truncation as discussed below. 

3.2. Local non-similarity method (LNS) 

This section deals with the local non-similarity 
method initiated by Sparrow and Yu [23] and has since 
been applied by many investigators to solve various 
nonsimilarity boundary value problems. Formulation 
of the system of equations for the local nonsimilarity 
model with reference to the present problem will now 
be discussed. 

At the first level of truncation, the terms accom- 
panied by ~ ( ) / ~  are small. This is particularly true 
when ( << 1. Thus the terms with ( ( ) /~(  on the right 
hand sides of equations (15) (17) are deleted to get the 
following system of equations: 

f "  + 2 Gr* (1 + N) f ' f "  -- O' + N¢' (24) 
I + N  

(1+ (~ )  0"+ 1 0' ( f + 2 ~ )  = 0  (25) 

1 (1 + ~  r/) ¢,, + 1 ¢, L---~ 2 ( f  + 2 ( )  = 0 (26) 

equations (24-26) can be regarded as a system of 
ordinary differential equations for the functions f ,  0 and 
¢, with ( as a parameter for given pertinent parameters. 
For the higher level of truncations, we introduce the 
following functions: 

Of O0 ~¢ 

OA ?o2 ~¢~ (27) 

and obtain the equations upto the third level of 
truncations. Thus, the equations up to the third level of 
truncations obtained are as follows: 

f "  +2Gr*  ( l + N )  f f " -  
0' + N ¢' 

I + N  
(2s) 
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1 O' 1 O' ( 1 + ~ r / ) 0 " + ~ ( / + 2 ~ )  = ~ ( y ' o ~ -  y~) (29) 

1 ( 1 + ~ ? ) ¢ " +  1 ¢, 1 
L--~ ~ ( f + 2 ~ )  = ~ ( f ' ¢ l - ¢ ' f l )  (30) 

fi' + 2 Gr* (l + N) ( f '  f;' + f "  f;) - O'~ + N ¢i (31) 
I + N  

. 1 O' 1 , 0" ( I + ~ v )  O1 + ~ ( f + 2 ~ ) O ~ + f x  - - ~ f  0~+~  + 0 '  

= l ~ ( f ' O 2 - F f i O l - O t f 2 - f l O ~ )  (32) 

_ _  . , ,  1 ¢ ,  1 , ¢,, 1 ( l + ~ r / ) @ l + ~ ( y + 2 c ) ¢ i + / 1  _ ~ f  q~l.3t_f ] nt_•t 
Le 

= l £ ( f '  ¢2 + f~ ¢l - ¢' f2 - f~ ¢'~) (33) 

f~' + 2Gr* (1 + N) (f'f£' + 2 fl fi' + f "  f~) 

_ 0~ + N¢i 
I + N  

(34) 

, 3 0' ' 0' (1 + ~r/) 0~' + ( f + 2 ~ ) O 2 + - ~ f 2  - f 1 0 1 + 2 f l  

+2o~ + 2,7o7 

1 
= ~ ( 2 f ' O 2 + f ; O 1 - 2 0 ' f 2 - - f l O ~ 2 )  (35) 

1 ¢~, 1 3 ¢, 
~e  (1 + ~rl) + ~ ( f + 2 ~ ) ¢ ; +  ~f2 - f i ¢ l  

+2f10 '  + 2 ¢ i  + 2r/¢~' 

= l ~ ( 2 f ' ¢ 2 + f o P ¢ l - ¢ ~ f 1 - 2 f 2 ¢ i )  (36) 
2 

The set of equation (31-33) is obtained by differen- 
tiating the set of equation (28-30) with respect to (. 
In this set, all the terms on the right hand side are re- 
tained. Again, equations (31-33) are differentiated with 
respect to ~ to get the set of equations (34-36). In this 
set, the ~-derivatives of the functions f2, 02 and ¢2 are 
neglected. The boundary conditions to be satisfied by 
the above sets of equations are: 

f = f w ,  0 = 1 ,  ¢ = 1  at 77=0 
(37) 

f f ' = O ,  0 = 0 ,  ¢ = 0  as ~ o c  

f l = 0 ,  01 =(~1 m~-0 at r / = 0 ]  
(as) f f~ =01 =¢1 = 0  as 7/--*Oc 
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TABLE I 
Numerical values of local Nusselt number 

and Sherwood number for different values of fw. 

Nu~ Ra: f f  2 Sh~ Ra; f f  2 

FDM LNS DM LNS FDM LNS FDM LNS 

fw = 1 . 0  fw = - 1 . 0  fw = 1 . 0  fw = - 1 . 0  

0.0 0.4253 0.4256 0.4253 0.4256 0.6015 0.6020 0.6015 0.6020 

0.4 0.3356 0.3280 0.7672 0.7879 0.4746 0.4639 1.0850 1.1143 

0.8 0.2749 0.2701 1.1671 1.2065 0.3887 0.3819 1.6506 1.7063 

1.0 0.2523 0.2345 1.3809 1.4290 0.3569 0.3316 1.9529 2.0209 

2.0 0.1818 0.2113 2.5303 2.5994 0.2570 0.2988 3.5784 3.6761 

3.0 0.1464 0.1954 3.7353 3.8049 0.2071 0.2764 5.2826 5.3809 

4.0 0.1265 0.1606 4.9526 5.0201 0.1789 0.2272 7.0040 7.0995 

5.0 0.1143 0.1529 6.1730 6.2382 0.1617 0.2162 8.7300 8.8222 

6.0 0.1064 0.1470 7.3948 7.4575 0.1505 0.2079 10.457 10.546 

7.0 0.1010 0.1437 8.6173 8.6771 0.1428 0.2033 12.186 12.271 

8.0 0.0971 0.1416 9.8401 9.8964 0.1373 0.2003 13.916 13.995 

9.0 0.0942 0.1386 11.0633 11.0847 0.1332 0.1961 15.645 15.676 

10.0 0.0919 0.1377 12.2867 12.2720 0.1300 0.1947 17.376 17.355 

f2 = / 7 2 = ¢ 2 = 0  at ~ = 0  ~ (39) 

f ~ = / 7 2 = ¢ 2 = 0  as ~ c c  ) 

As at the lower levels, the system of equations, equa- 
tions (28)-(36) together  with the boundary  conditions 
(37)-(39), contains nine functions f ,  f l, f 2, O,/71,/?2, ¢, ¢1, 
and ¢2 tha t  are mutual ly  coupled. The to ta l  order of 
this system is now 18. For given values of the per t inent  
parameters ,  these equations can again be t rea ted  as or- 
d inary  differential equations tha t  contain the parameter  
~. From the solutions of the above equations, we are 
interested in obtaining solutions only for the  functions 
f,/?, and ¢ and their  derivatives. The above system of 
9 equations is solved using the implicit  R u n g e - K u t t a  
method in conjunction with the Nachtsheim-Swiger t  
i terat ion technique. The details  of the computa t ional  
technique have al ready been discussed in Hossain and 
Nakayama [20] and Hossain et al. [24]. I t  should be 
noted here tha t  in gett ing the convergence of the so- 
lutions, the maximum number of i terat ions was 5-7 to 
satisfy the  required tolerance of the convergence, which 
was taken 10 -6 . 

4.  R E S U L T S  A N D  D I S C U S S I O N S  

In the present investigation, results are obtained 
by two dist inct  methodologies,  namely, the implicit  

finite-difference method with Keller-box scheme and 
the local nonsimilar i ty  method with th i rd  order level of 
t runcation.  Numerical  values are obta ined in terms of 
local Nusselt number  Nu~ and local Sherwood number  
Shx for different values of the per t inent  parameters .  
These parameters  are the modified Grashof number  
Gr*, buoyancy parameter  N,  Lewis number Le, and 
the curvature parameter  ~ (0 ~< ~ ~< 10) for the flow 
along a permeable  cylindrical  surface in a porous 
medium. Effects of these parameters  on the velocity, 
t empera ture  and the species concentrat ion profiles are 
also shown graphically. The numerical  values of the 
local Nusselt number  and the local Sherwood number  
obtained by the two methods  mentioned above are 
t abu la ted  in table I for the per t inent  parameters  values 
Gr* = 1.0, N = I . 0 ,  L e =  1.0, and fw = 1.0 and - l . 0 .  
The comparison between the numerical  values obtained 
by the above two methods shows an excellent agreement 
between them for both  local Nusselt and Sherwood 
numbers. I t  is also noticed from this table  tha t  the values 
of both  Nux, and Shx, decrease with the increase of 
the curvature paramete r  while fluid is injected through 
the permeable  surface of the cylinder. On the other 
hand, values of these physical quanti t ies increase with 
increasing curvature effect when fluid is being sucked 
through the permeable  surface. This is due to the 
effect of bo th  thermal  and concentrat ion boundary  layer 
thicknesses on the physical quantit ies.  For the case of 
fluid injection, the  boundary  layer thickness becomes 
thicker with increasing the curvature paramete r  and as 
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a result the Nusselt and Sherwood numbers decrease. 
Table H represents the numerical values of the local 
Nusselt number,  Nux, and the Sherwood number,  Shx, 
for the case of impermeable cylindrical surface with 
parameter values Gr* = 1.0, 10.0 and 100.0, N = 5.0, 
and Le = 10.0. The values of the curvature parameter 
are chosen as in the previous case. These results are 
solely obtained by using the implicit finite-difference 
method. Front table H one can see that  the numerical 
values of both Nux and Shx decrease due to an increase 
in the value of the Grashof number,  Gr*. As the modified 
Grashof number  increases, the drag forces created by the 
solid matrix increases and as a result the temperature 
and the eoncentart ion gradients decrease. Moreover, an 
increase in the curvature effect leads to an increase in 
the values of these physical quantities at the surface. 
Therefore, the effect of the transverse curvature (() is 
to sharpen the variations neat" the surface. In table III, 
numerical values of the local Sherwood number for 
different values of the Lewis number  Le (= 1, 10, 50 
and 100.0) with Gr* = 10.0, N = 1.0 and fw = 0.0. 
Since the effect of the Lewis number  on the local Nusselt 
number  is not found to be significant, the results are not 
shown in this table. However, from this table, one can 
observe that  the Lewis number  has a significant effect 
on the values of the Sherwood number. As the Lewis 

T A B L E  II 
Numerical values of local Nusselt number 
and Sherwood number for different values 

of Gr*  when N = 5.0, Le = 10.0, and fw = 0.0. 

- -1 /  n -1/2 
Rax, i 2 Sh nax, c N u  

~/Gr* 1.0 10.0 100.0 1.0 10.0 100.0 

0.0 0.5066 0.3356 0.2274 0.9886 0.6049 0.3490 

0.2 0.6124 0.4654 0.3865 1.0339 0.6503 0.3934 

0.4 0.7208 0.5910 0.5239 1.0779 0.6939 0.4355 

0.6 0.8291 0.7109 0.6502 1.1209 0.7360 0.4763 

0.8 0.9360 0.8259 0.7694 1.1629 0.7768 0.5161 

1.0 1.0411 0.9368 0.8834 1.2041 0.8166 0.5555 

2.0 1.5406 1.4509 1.4067 t.4000 1.0044 0.7486 

3.0 2.0063 t.9238 1.8848 1.5834 1.1808 0.9390 

4.0 2.4495 2.3720 2.3366 1.7579 1.3513 1.1267 

5.0 2.8764 2.8028 2.7703 1.9259 1.5185 1.3113 

6.0 3.2910 3.2207 3.1903 2.0891 1.6837 1.4926 

7.0 3.6955 3.6281 3.5995 2.2486 1.8475 1.6708 

8.0 4.0918 4.0269 3.9999 2.4052 2.0103 1.8461 

9.0 4.4810 4.4184 4.3927 2.5595 2.1721 2.0188 

10.0 4.8642 4.8036 4.7790 2.7119 2.3330 2.1891 

T A B L E  Ill 
Numerical values of Shx against ~ for different 

values of Le with N = 1.0 and fw = 0 
obtained by finite difference method. 

~/Le 1.0 100.0 

0.0 
0.4 
0.8 
1.2 
2.0 
4.0 
6.0 
8.0 

10.0 

0.4722 
0.5897 
0.7061 
0.8221 
1.0519 
1.6050 
2.1278 
2.6274 
3.1093 

10.0 50.0 

1.6181 3.6774 
1.7325 3.7942 
1.8415 3.9084 
1.9462 4.0204 
2.1458 4.2391 
2.6050 4.7606 
3.0319 5.2534 
3.4440 5.7232 
3.8495 6.1741 

5.2180 
5.3354 
5.4508 
5.5646 
5.7885 
6.3291 
6.8464 
7.3440 
7.8247 

number increases, the Sherwood number increases. This 
is because the concentration boundary layer becomes 
increasingly thinner  as Le increases. A similar effect of 
this parameter on the Lewis number had been observed 
in case of the flow along a flat plate [14]. 

The effect of the modified Grashof number and the 
curvature parameter on the velocity, temperature,  and 
the species concentration profiles is shown in figure 2 
with N = 5.0, Le = 10.0, and fw = 0.0. It is observed 
from this figure that  an increase in tile value of the 
Grashof number leads to a decrease in the velocity peak, 
which occurs at the surface. This happens because the 
inertia term begins to have a pronounced effect for 
high Grashof numbers. Moreover, for a fixed value of 
Grashof number, an increase in the transverse curvature 
results in a decreasing of the velocity profiles. From this 
figure we further observe that  the temperature and 
the concentration distributions in the boundary layer 
increase owing to increase in the value of the Grashof 
nmnber  and as a result both the thermal and velocity 
boundary layers become thicker. Finally, the effect of 
the Lewis number and the transpirat ion parameter on 
the velocity, temperature,  and the species distributions 
are shown in figure 3 for ( = 2.5 with N = 5.0 and 
Gr* = 10.0. In this figure the solid, dotted, and broken 
curves represent tile distributions for fw = -1.0,  0.0 and 
1.0, respectively. It is observed from this figure that  the 
suction of fluid through the surface of the cylinder 
leads to an increase in the velocity, temperature, 
and the concentration profiles while blowing of fluid 
leads to a decrease in the velocity, the temperature 
as well as tile species concentration distributions in 
the boundary layer regime. We further observe that  
the velocity, the temperature and the concentration 
distribution decrease due to an increase in the value of 
the Lewis number. As mentioned earlier, increasing Le 
is to thicken the temperature boundary layer and to 
thin the concentration boundary layer. 
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Figure 2. Velocity (a), temperature (b) and species concentration profiles (c) against r/ for different Gr* and ,~ with 
L e =  10.0, N = 5 . 0 a n d  f w = 0 . 0 .  
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Figure 3. Velocity (a), temperature(b) and species concentration profiles (c) against r/ for different Le and fw with Gr* =10.0 ,  N = 5 . 0 a n d ~ = 2 . 5 .  
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5.  C O N C L U S I O N S  

Extensive numerical  integrations were carried out, 
using the implicit  finite difference technique together  
with the  Keller-box method and the local nonsimilar i ty 
method,  to investigate the non-Darcy na tura l  convection 
heat  and mass transfer  from a vertical  cylinder with 
surface mass flux. The numerical values are furnished 
for wide ranges of the parameters  associated with 
the porous inertia,  t ransverse radial  curvature,  surface 
mass flux and the combined buoyancy parameter .  The 

individual  and combined effect of these parameters '  
on the velocity field, the t empera tu re  field and 
the concentrat ion field are elucidated and presented 
graphically. The results obta ined by two methods are 
compared in tabular  form and found to be in excellent 
agreement.  From the present analysis we may conclude 
tha t  (1) both  the local Nusselt number,  Nu=, and the 
Sherwood number,  Sh~, decrease with the increase of 
the curvature parameter  while fluid is injected through 
the permeable  surface of the cylinder. On the other 
hand, values of these physical quanti t ies increase with 
increasing curvature effect when fluid is being sucked 
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through the permeable surface and (2) both Nu~ and 
Shx decrease due to increase in the value of the Grashof 
number, Gr*. 
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